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M. Calçada1 and J. G. Pereira1,2

Received August 1, 2001

According to general relativity, the interaction of a matter field with gravitation requires
the simultaneous introduction of a tetrad field, which is a field related to translations,
and a spin connection, which is a field assuming values in the Lie algebra of the Lorentz
group. These two fields, however, are not independent. By analyzing the constraint
between them, it is concluded that the relevantlocal symmetry group behind general
relativity is provided by the Lorentz group. Furthermore, it is shown that the minimal
coupling prescription obtained from the Lorentz covariant derivative coincides exactly
with the usual coupling prescription of general relativity. Instead of the tetrad, therefore,
the spin connection is to be considered as the fundamental field representing gravitation.
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1. INTRODUCTION

The group of motions of Minkowski space-time is the 10-parameter Poincar´e
group, the semidirect product of the translation and the Lorentz groups. Denoting
by {xa} (a, b, c, . . . = 1, 2, 3, 4) the cartesian coordinates of Minkowski space,
and by

ηab = diag(1,−1,−1,−1) (1)

its metric tensor, an infinitesimal translation of the space-time coordinates is de-
fined as

δt x
a = −i εcPcxa, (2)

whereεc are the translation parameters, and

Pc = −i
∂

∂xc
≡ −i ∂c (3)
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are the translation generators. By using these generators, the transformation (2)
can be rewritten in the form

δt x
a = −εa. (4)

On the other hand, an infinitesimal Lorentz transformation is defined as

δL xa = − i

2
εcdLcdxa, (5)

whereεcd = −εdc are the Lorentz parameters, and

Lcd = i (xc∂d − xd∂c) (6)

are the Lorentz generators. By using these generators, the transformation (5) can
be rewritten in the form

δL xa = −εa
dxd. (7)

An interesting property of the Lorentz transformation (5) is that it can be
rewritten formally as a translation (Kibble, 1961). In fact, by using the explicit
form of Lcd, it becomes

δL xa = −i ξ cPcxa, (8)

which is a translation with

ξ c = εc
dxd (9)

as the translation parameters. In other words, an infinitesimal Lorentz transforma-
tion of the space-time coordinates is equivalent to a translation withξ c ≡ δL xc as
the parameter. Actually, this is a property of the Lorentz generatorsLab, whose
action can always be reinterpreted as a translation. The reason for such equivalence
is that, because the Minkowski space-time is transitive under translations, every
two points related by a Lorentz transformation can also be related by a translation.
Notice that the reverse is not true.

2. CONSERVED QUANTITIES

The conservation laws of energy-momentum and angular-momentum in spe-
cial relativity are connected with the Poincar´e group, the isometry group of
Minkowski space-time (Trautman, 1962). In fact, according to Noether’s theorem
(Konopleva and Popov, 1981), the invariance of a physical system under a space-
time translation leads to the conservation of thecanonicalenergy-momentum
tensor, whereas the invariance under a Lorentz transformation leads to the conser-
vation of thecanonicalangular-momentum tensor. When passing to general rela-
tivity, these two tensors are modified by the presence of gravitation. Furthermore,
the source of the gravitational field, the so-calleddynamicalenergy-momentum
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tensor, turns out to be a symmetrized version of the modified energy-momentum
tensor.

Let us consider the following structure. At each point of space-time, whose
coordinates we denote byxµ(µ, ν, ρ , . . . = 0, 1, 2, 3), we attach a Minkowski
tangent space where both the Lorentz and the translation groups act locally. It
should be remarked that the action of these two groups are not defined in a curved
Riemannian space-time (Wald, 1984). Now according to the gauge approach to
gravitation (Hehlet al., 1995), the gauge field related to translations shows up as
the nontrivial part of the tetrad field (Kibble, 1961). Denoting by

B = Ba
µPa dxµ (10)

the translational gauge potential, which is a connection assuming values in the
Lie algebra of the translation group, the tetrad field is written as (de Andrade and
Pereira, 1997)

ha
µ = ∂µxa + c−2Ba

µ, (11)

where the velocity of lightc was introduced for dimensional reasons. Its inverse,
denoted byhρc, is defined by the relations

ha
µ hµc = δa

b and hµc hc
ρ = δµρ ,

and is given by an infinite series,

hρc = ∂cxρ − c−2Bρc + · · · . (12)

On the other hand, the gauge field related to Lorentz transformations is the
so-called spin connectionAa

bµ, a connection assuming values in the Lie algebra
of the Lorentz group. Its explicit form is (Dirac, 1958)

Aa
bµ = ha

ρ

(
∂µhρb + 0ρνµhνb

) ≡ ha
ρ∇µhρb, (13)

where0ρνµ is the Levi–Civita connection of the space-time metricgµν , with∇µ the
corresponding covariant derivative. The space-time and the tangent space metrics
are related by

gµν = ha
µ hb

ν ηab. (14)

Let us consider now a general matter field9 with the action functional

S= 1

c

∫
Ld4x ≡ 1

c

∫
L
√−g d4x, (15)

where g = det(gµν). According to Noether’s theorem, thedynamicalenergy-
momentum tensor of the matter field—that is, the tensor appearing in the right-hand
side of the gravitational field equations—is given by

T µa = −c2

h

δL
δBa

µ

, (16)
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whereh = det(ha
µ) = √−g. Since the tetrad is linear in the translational gauge

field Ba
µ, the functional derivative in relation toBa

µ can alternatively be written
as a functional derivative in relation toha

µ,

T µa = −1

h

δL
δha

µ

, (17)

which is the form it usually appears in the literature (Weinberg, 1972). On the
other hand, the angular-momentum tensor of the matter field is

J µab = 1

h

δL
δAab

µ

. (18)

It is important to remark that, as thedynamicalenergy-momentum tensor (17)
is automatically symmetric,

haλT µa = haµT λa, (19)

the total—that is, orbital plus spin—angular-momentum tensor is given by
(Hayashi, 1972; Weinberg, 1972)

J µab = xaT µb − xbT µa. (20)

We see in this way thatT µa andJ µab are not independent tensors. In fact, given
the energy-momentum tensor, the expression for the angular-momentum tensor
can immediately be written down.

That T µa andJ µab are not independent tensors should not be surprising
because the translational gauge potentialBa

µ and the spin connectionAab
µ are not

independent either, as can be seen from Eq. (13), which gives the spin connection
Aab

µ in terms of the translational gauge potentialBa
µ. The physical reason for this

dependency is that bothBa
µ andAab

µ are produced by the very same gravitational
field.

Let us then look for the inverse relation, that is, let us look for an expression
yielding Ba

µ in terms ofAab
µ. By comparing the expressions (16) and (18) with

(20), we find immediately that

Ba
µ = c2Aa

bµxb. (21)

In fact, from Eq. (18), and making use of Eq. (16), we have

J µab = −c−2T ρc
δBc

ρ

δAab
µ

. (22)

But, taking into account thatAab
µ = −Aba

µ, we get from Eq. (21)

δBc
ρ

δAab
µ

= c2δµρ
(
δc

axb − δc
bxa
)
. (23)
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Substituting in Eq. (22), we get exactly the expression (20) for the angular-
momentumJ µab.

3. MINIMAL COUPLING PRESCRIPTION

When considering coordinate transformations, only the generatorsPa and
Lab must be taken into account. However, in the study of the coupling of a general
matter field to gravitation, other representations of the Lorentz generators show
up. For example, under alocal tangent-space Lorentz transformation, a general
matter field9(xµ) will change according to (Ramond, 1989)

δ9 ≡ 9 ′(x)−9(x) = − i

2
εabJab9, (24)

whereJab is an appropriate generator of the infinitesimal Lorentz transformations.
The most general form ofJab is

Jab = Lab+ Sab, (25)

whereLab is theorbital part of the generator, whose explicit form, given by Eq. (6),
is the same for all fields, andSab is thespinpart of the generator, whose explicit
form depends on the spin contents of the field9. Notice that the orbital generators
Lab are able to act in the space-time argument of9(xµ) because of the relation

∂a = (∂axµ) ∂µ.

By using the explicit form ofLab, the Lorentz transformation (24) can be
rewritten as

δ9 = −εabxb∂a9 − i

2
εabSab9, (26)

or equivalently,

δ9 = −ξ c∂c9 − i

2
εabSab9, (27)

where Eq. (9) has been used. In other words, theorbital part of the transformation
can be reduced to a translation, and consequently the Lorentz transformation of
a general field9 can be rewritten as a translation plus a strictly spin Lorentz
transformation. It should be remarked that, despite the similarity with a Poincar´e
transformation, it does not correspond to a transformation of the Poincar´e group
because in this group the translation and the Lorentz parameters are completely
independent. This is clearly not the case here because of the constraint (9) between
the translation and the Lorentz parameters.

As is well known, the gravitational minimal coupling prescription amounts
to replace all flat–space-time ordinary derivatives∂a by covariant derivativesDa.
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The general definition of covariant derivative is (Aldrovandi and Pereira, 1995)

Dc9 = ∂c9 + 1

2
Aab

c
δ9

δεab
, (28)

whereAab
c = Aab

µ hµc. Substituting Eq. (26), we get

Dc9 = ∂c9 − Aab
c xb∂a9 − i

2
Aab

c Sab9, (29)

or equivalently,

Dc9 =
(
δa

c − Aa
bcx

b
)
∂a9 − i

2
Aab

c Sab9. (30)

Then, by making use of Eqs. (11) and (21), we can write

Dc9 = hµc Dµ9, (31)

with

Dµ = ∂µ − i

2
Aab

µSab (32)

the Fock–Ivanenko covariant derivative operator (Fock, 1929; Fock and Ivanenko,
1929). Therefore, the minimal coupling prescription associated with the transfor-
mation (26) can be stated in the form

∂c→ Dc = hµc Dµ, (33)

which is exactly the usual coupling prescription of general relativity. In fact, as is
well known, in the coupling prescription of general relativity the tetradha

µ and
the spin connectionAab

µ are not independent fields. Such a coupling prescription,
as we have shown, can be obtained from a Lorentz covariant derivative with the
complete representation (25). In this covariant derivative, theorbital part of the
Lorentz generators are reduced to a translation, which gives rise to a tetrad that
depends on the spin connection. This reduction, therefore, is responsible for the
constraint between the tetrad field and the spin connection. The same constraint
gives rise also to the relation between energy-momentum and angular-momentum
tensors of a matter field.

4. FINAL REMARKS

It is well-known that the energy-momentum conservation is related to the
invariance of the action under a translation of the space-time coordinates, and the
angular-momentum conservation is related to the invariance of the action under a
Lorentz transformation. However, as the symmetric energy-momentum tensorT µa

and thetotal angular-momentum tensorJ µab are not independent quantities, the
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parameters related to translation and Lorentz transformation cannot be independent
either. In fact, they are related by

ξa = εa
bxb, (34)

which yields naturally the relation (20) betweenT µa andJ µab.
On the other hand, we have shown that the minimal coupling prescription

associated with the Lorentz transformation (26), that is, the coupling prescrip-
tion given by a derivative covariant under the Lorentz transformation (26), yields
exactly the coupling prescription of general relativity, provided the identification

Aa
bµxb = c−2Ba

µ (35)

is made. This identification implies that the tetrad field and the spin connection are
not independent fields. As a consequence, thelocalsymmetry group of general rel-
ativity cannot be the Poincar´e group because in this group there are 10 independent
parametersεa andεab and 10 independent gauge fieldsBa

µ and Aa
bµ. The true

local symmetry group behind general relativity, therefore, is the six-parameter
Lorentz group. In the form (27), the Lorentz transformation of a matter field re-
sembles a Poincar´e transformation, but because of thefour constraints (34), it is
actually a transformation of the Lorentz group. In fact, if the local symmetry group
were given by the Poincar´e group, the tetrad and the spin connection would be
independent fields.

We have also seen that the tetrad field appears naturally in the theory as a
consequence of the reduction of theorbital Lorentz generatorLab to a translation
in the coupling prescription. The resulting tetrad field,

ha
µ = ∂µxa + Aa

bµxb, (36)

is a functional of the spin connection, which reduces to the usual form (11) when
the identification (35) is used. In agreement with the fact that the local sym-
metry group of general relativity is the Lorentz group, therefore, we can then
say that the fundamental field of gravitation is the spin connection and not the
tetrad.
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